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Synthesis of Mixed Lumped and Distributed

Impedance-Transformingg Filters

RALPH LEVY, SENIOR MEMBER, IEEE

.4bsfruct-The design of a class of impedance-transforming filters

in the form of very compact and convenient mixed lumped and dis-

tributed ladder networks is presented. The synthesis utilizes the dis-

tributed prototype technique introduced in a previous paper, but here

a new approximation function appropriate to the impedance trans-

former problem is derived. In addition to combining the properties of

an impedance transformer and a low-pass filter, the new circuit repre-

sents a solution to the problem of short-line matching to an extreme

impedance value without using extreme impedance values in the

transformer. Broad-band designs are tabulated for a wide range of

parameters. A discussion of the application of the technique in the

design of mixed lumped and distributed broad-band matching net-

works is included.

A 5O-10-Q transformer was designed for the band 3.5-7.o

GHz, having a voltage standing-wave ratio of 1.15 and giving an at-

tenuation >20 dB in the band 10.5-21.0 GHz. The length of tlis

transformer is 0.875 in, and the experimental results showed excel-

lent agreement with theory.

INTRODUCTION

T
HE design of impedance transformers in a com-

pact and convenient format has been the subject

of considerable research effort. The conventional

(and usually best) solution to the problem of matching

between two purely resistive impedances is the well-

known multiquarter-wave section stepped impedance

transformer. However, this can be rather lengthy, es-

pecially at the lower microwave frequencies. The short-
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step impedance transformers described by Matthaei el

al. [1] are, as the name implies, much shorter than the

corresponding quarter-wave transformers. Their chief

disadvantage is the fact that the range of impedance

levels within any given transformer is considerably

larger than the input and output impedance levels. For

example, a six-section XJ:16 transformer for a 5:1 im-

pedance change and fractional bandwidth w = 0.8 re-

quires normalized impedances varying between 0.572

and 8.74, a range of 15.25:1, compared with only 5:1 for

the transformer ratio obtained. Thus a transformer

from 10 Q to 50 Q utilizing this design would require one

line having the very low impedance value of 5.72 ft.

This example illustrates the problem of producing

short-length impedance transformers where the impe-

dance levels within the transformer lie in a range en-

compassed by the terminating impedances. ‘Preferably

it would be most desirable to design a short transformer

to an extreme terminating impedance without requiring

such an impedance in the transformer. Conventional

quarter-wave transformers achieve this at the expense.

of length.

In one sense a solution to the problem can be obtained

with mixed lumped and distributed circuits. A simple

way to see this is to note that we might consider re-

placing the A%/16 line of impedance 5.72 Q in the

Matthaei transformer described by a lulmped capacitor.

This can be accomplished rather accurately since the

line is mainly capacitive. If all the low-impedance lines,
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Fig. 1. Comparison between insertion loss of distributed prototype and mixed lumped and distributed impedance-transforming filters.

in the transformer could be converted into capacitors,

the desired result would be obtained partially, while the

problem of the high-impedance lines remains.

The problem of realizing the low-impedance lines re-

duces to that of realizing lumped or substantially

lumped capacitors at microwave frequencies. One way

to do this is to use very short lines of low impedance,

which may appear to present us with the same problem

as before. This is in fact not quite the case, since the

construction of microwave disk capacitors, which are

commonly used in coaxial low-pass filters, is not diffi-

cult. The transformer becomes even shorter by the com-

pression of the low-impedance lines into lumped

capacitors. In turn, this implies that we could have

commenced from a somewhat longer prototype having

a lesser range of impedance levels. However Matthaei

notes [2] that the basic line length must be less than

i~/8. This restriction is not fundamental to mixed

lumped and distributed transformers, which when de-

signed by the method described herein can give very

convenient impedance levels.

It should be noted also that there has been consider-

able interest in using lumped components in microwave

integrated circuits [3 ]– [6 ]. Microwave chip capacitors

are quite common, microwave lumped inductors rather

less common but in existence. The utilization of mixed

lumped and distributed circuits would appear to offer

additional advantages and flexibility of design in inte-

grated circuits.

A further advantage of mixed lumped and dis-

tributed transformers is the possible allowance for

parasitic in the terminating impedances, i.e., these

need not be purely resistive. The type of impedance-

transforming filter described in this paper allows the

absorption of one or two parasitic elements across a

terminating resistor, e.g., a series inductance and a
shunt capacitance, but the principle may be extended

to more complicated terminations.

Finally one of the most useful aspects of the new cir-

cuits is their harmonic filtering property. A conven-.

tional quarter-wave transformer gives little or no at-

tenuation at the higher harmonics. On the other hand

the class of mixed lumped and distributed circuits

described here combines the properties of an impedance

transformer and a low-pass filter. It should be useful in,

for example, the design of varactor multipliers or any

application where combined filtering and impedance

transformation is desirable.

Another type of impedance transforming filter having

an interdigital realization is described by Wenzel [7].

This would normally be more complicated and expen-

sive than the quasi-low-pass filter described here.

THE METHOD

The synthesis technique for the mixed lumped and

distributed impedance-transforming filters is based on a

class of fully distributed prototype filters consisting of a

cascade of open-circuited shunt stubs of electrical

length 0 spaced by transmission line elements (TLE) 1 of

1 It is suggested that the misleading term ‘funit element” com-
monly used for a length of transmission line should be replaced by
the more direct and descriptive term “transmission line element. ”
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length 20 [8]. Since the stubs are electrically short for 6

less than approximately ~/4, they may be replaced by

lumped capacitors, and the filter will remain well

matched in a low-pass band. For example, a stub of

admittance yi and electrical length Oj at frequency CIA

may be replaced by a capacitor Ci given by the equation

(.OgCi= yi tan et. (1)

In a low-pass filter this equivalence is arranged to be

satisfied at the cutoff frequency, which is therefore real-

ized exactly. The procedure is the converse of designs

which commence from a lumped element low-pass

prototype. Once the prototype is available, it is also

considerably simpler to implement.

Examples presented in [8] and further examples

given later in this paper show the extent of the devia-

tions between the mixed lumped and distributed filter

and the prototype on which it is based. The deviations

are due to the differences between the admittances yi

tan 6’ and uC~ shunted across the main line by the ith

stub of the prototype and the corresponding capacitor

of the mixed lumped and distributed filter. Below the

frequency w at which (1) is satisfied, ~C’i > y~ tan 6, but

the reflection coefficients at the junctions vary in the

same way with frequency. The passband ripples in-

crease in amplitude slightly as w decreases. Above the

frequency w,, wCi < yi tan 0, and the attenuation of the

mixed lumped and distributed filter is less than that of

the prototype. The prototype has a pole of attenuation

when O is an odd multiple of ~/2, whereas the mixed

lumped and distributed filter reaches a finite maximum

of attenuation, as illustrated in Fig. 1.

In the case of an impedance-transforming quasi-low-

pass filter, there is a mismatch at zero frequency whose

voltage standing-wave ratio (VSWR) is given by the

ratio R of the terminating resistances. I t is necessary to

seek such a prototype insertion loss function which is

equiripple between frequencies proportional to electrical

lengths 01 and 62, as shown in Fig. 1. Additionally the

prototype must consist of a cascade of open-circuited

shunt stubs of electrical length 6 spaced by TLEs of

length 20. A minimum number of TLEs of length O may

also be tolerated.

The lowest ordered prototype consists of a single TLE

with stubs at each end, as shown in Fig. 2. The transfer

matrix of this circuit is
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Fig. 2. Lowest ordered prototype.

It would be very difficult to discover general insertion

loss functions of this type containing two complicated

squared terms, the sum of which gives an equiripple

response. In practice it is necessary to restrict the inser-

tion loss function to be either symmetric or antimetric.

The symmetric case does not apply to an impedance

transformer because of the necessity of having a mis-

match at t = O, so that we seek a solution for the anti-

metric case where

B/@= CV% (4)

It is immediately apparent that a solution of this

antimetric type cannot be obtained from (2), since the

1? and C terms are not of equal degree. The general case

of n TLEs of length 26 has a transfer matrix of degree

[

2n 2n–1
D

2n+l 2n 1
(5)

where D denotes degree.

In order to make the B and C terms equal in degree it

is necessary either to increase the cascade by a single

TLE of length 0, or to use a prototype having a trans-

mission zero of order 2. In the case of the extra TLE, the

transfer matrix of which is

1 [-1 t/JT7 . ..

1<1–t’ Yt 1“A
(6)

the degree of the overall network becomes

‘c :l”D[2nYl 2n2N

[

2n+2 2n+l
== D

2n+l 2n 1
. (7)

Matrix (7) is now capable of satisfying condition (4).

However, the network is terminated with a single-

[: :I=+%t :1[::: ::U2t :1

1

[

1 + (1 + 2y’/ YJP 2t/ YI
. _——

1 – tz (yl + y2 + 2 ITl)t + (yl + y2 + 2yly2/ Yl)t3 1 + (1 + 2yl/ Y1)L2 1 (2)

where t is Richards’ variable, i.e., at real frequencies length TLE having no shunt stub at one end adjacent to

t=j tan 9. When terminated in impedances 1 and R, the a resistive termination. This configuration is not very

insertion loss of the Iossless reactive network is useful if it is desired to match out the parasitic shunt

Po
capacitance which the termination might possess at that

=1+* I A~R–D/~R 1’+$ I B/4R-–C4R /2. (3) end of the transformer. It is useful in some cases where

FL such a parasitic exists at only one end, but even then
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Fig. 3. (a) Basic single-ordered prototype with TLE at one end. (b) Addition of redundant TLE. (c) Final network. Lumped capacitors
shown indicate stubs of length o in prototype. C.— L’ = (G — YJ/(1 +G/ Y.), Y.’= 2G/(1 +G/ Y.), G+l = G(G— YJ/(G+ Yn).

TABLE I

SINGLE-ORDERED TRANSMISSION ZERO, n =2, el = 15°, 02= 30°

r R 1 e I 3 I 4 5 6 I 8 10 1
I

SY7JB
1 1.4487 1.9029 2.2168 2.4656 2.6757

2

3.0256 3.3171

2.5B7@ 3.7407 .9.7071 5.5708 6.3639 7.8007 9.0943

3 .7908 1.4466 2.1243 2.8224 3.5374 5.0073 6.5t69

LINE
1 .8592 .9594 1.0483 1.126s 1.1972
2 i .2092

1.3208 1.4282

1.5534 1.8757 2.1776 2.4626 2.9927 3.4s11

VSWR 1.1634 1.2860 1.3772 1.4636 1.5434 1.6893 1.8236

THETA ATTENUATION OF L/D FIL7ER (OB)
—— 7

45

-]

6.8442 10.3446 12.3727 13.77s43 14.8481

68 14.5667

,.5.4292 I ,7.5882

18.3154 20.3642 21.7604 22.8154 a4.3661 25.5036

75 16.1571 19.4345 21.2452 22.4916 23.4410 24.8511 25.8921

90 9.9390 11.4303 12.2822 12.8973 13.3s72 14.1554 14.7568 —

TABLE II

SINGLE-ORDERED TRANSMISSION ZERO, n= 3, o,= 15°, e,= 30°

R I 2 I 3 4 I 5 I 6 I s
1 I I I I I

STUB
1 1.1335 1.4026 1.5763 1.7078
2

1.8149 I .9S62
2.6S20 3.3980 3.9749 4.4644 4.8974 5.6512

THETAI ATTENUATION OF L/D FILTER [ DB)

45 12.3687 16.3090 18.4604 19.9212 21.0212
60 24.2039 28.0159 30.0722 31.4666 32.5172
7s 25.6520 28.9146 30.6999 31.9231 32.8523
90 13.1315 14.3296 1 S.0474 15.58!4 16.0149

-=---i

I2.1228
6.3045

12.2190
5.2019

-4
1.@454
2.1134
4. 79s1

——

1.2168

m
1 1

TABLE III

SINGLE-ORDERED TRANSMISSION ZERO, n =3, o,= 15°, Q,= 45°

I R I 2 I 3 I 4}5 I 6___i_-8 10 [, , & 4
S7UB

.60S1 .7913
:

.9135 1 .00ss 1.0878 1.2185

1.1889 1.s757 1.8697

1.3265
2.1174 2.3356 2.714S 3.0421

3 1.2444 1.8934 2.4598 2.9774 3.4597 4.3453 5.1511
.4732 .9307 1.422! 1.9411

L1;E
2.4825 3.6194 4.8137

1 1.0117 1.10S3 1.1899 1.2606 1.3238 1.4340 1.5298

2 1.1824 1.4510 1.6858 1.8961 2.0s79 2.4316 2.7’366

3 1.5268 2.0693 2.5779 3.0589 3.5175 4.3206 5.1863

VSWR 1.16S3 1.2887 1.3894 1.4792 1.5619 1.7135 1.6534

THETA ATTSNUATION OF L/D F1L7ER CDB)

60 7.B714 11.2936 13.2498 14.6036 i5.6346 17.1615 18.2s39

75 13.5443 16.7279 18.49S2 19.7213 20.6556 22.0476 23.07t76

90 S.6336 10.1350 11.0271 11.6855 12.2168 t 3.658s 13.7234
,

TABLE IV

SINGLE-ORDERED TRANSMISSION ZERO, n =4, 91= 15°, 02= 30°

~

!
1 .7673 .7860 1 .8@46 I .8212 .s 359 .8611
2

.8823
.8026 .9242 1.0265 I 1.1152

3
1.1941 1.3314

1.01.s9
1.4495

::= 1 ::% I :::::: ::;;:: %%;
S3.9896

4 1.5030 5.902@, 1 1 t

t VSkR 1.0156 1.0256 ! I .0334 1 .04f10 1.0457 1.0557 \ 1.@643

THETA ATTENUATION OF L/O FILTER (D!3)

45 1s.3510 22.4228 24.6102 26.0872 27.1962
60 33.886S 37.7046 39.7576 41.1473 42.1934
7s 35.148s 3s.3913 40.1580 41.3654 42.281 1
90 15.5252 16.5507 17.1980 17.6941 18.1043 m

TABLE V

SINGLE-ORDERED TRANSMISSION ZERO, n =4, 0,= 15°, 0,= 45°

L
STU8

.4756

i 1.0782
3 1.4157
4 1.2313
5 . S5S2

LINE
.9608

4 1.0617
3 1.2900
4 1.641S

VSWR 1 .07S7 E
3 4

.5990 .6778
1.3397 1.5265
1.9351 2.3647
1.9553 2.6286

.7029 1.0747

1.0130 1.0570
1 .23S6 1.3873
1.6707 2.0147
2.2971 2.9253

1.1265 1.1673

s

.7370
1.6T81
2.7444
3.2716
I .4687

1.0948
1.5169
2.3311
3.5313

1.2025

6 18 I 10

.7853
1.8082
3.0899
3.8920
~

1.1281
1.6328
2.6263
4.11s9

1.2340

J-.8625 .9244
2. E!279 2.2132
3. 709s 4.262.5
5.0786 6.2080
2.7506 3.6684

4
1.1855 I .2344’
1.836P 2.@125
3.1687 3.6630
5.?494 6.3316

1.?91?1 1.3400

TKTA .4TTENUATION OF L/D FILTER < DB)

60 11.5307 15.2037 17.2283 18.61@8 19.6560 ?l. !947 22.3199
7s 18.9437 22.1369 23.8909 25.0960 26.0133 27.3751 P(l.38@7
90 10.6134 11.9189 12.7114 ,13.3043 13.7868 14.5571 15. I 682

TABLE VI

DOUBLE-ORDERED TRANSMISSION ZERO, n =2, d,= 15°, 0,= 30°

:: ;:: 1.6974 1.763P 1.674P ;:;:: ::g:;
4.1414 4.6563 5.1129

‘:4 } ,.7S67 .8375 .881s . 92@0 .9536 1.Pill 1.0596
e ;5 .910S 1.1233 1.3112 1.4605 1.6358 Y.91S4

F 1.+,
2.1649

.7930 1 .06@9 1.3198 I .5690 1 .8C499 ?. P711 ?. 7104

~

ATTENUATION OF L/O FIL7ER (M)
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(a) (b)

Fig. 4. (a) Basic double-ordered prototype circuit. (b) After addition of redundant TLE and Kuroda transformation.
Lumped components shown are stubs of length o m prototype.

it has restricted application because it is found that the

lower impedance in the case of the shunt capacitive

transformer is always at the end without the capacitor.

It would not be possible to match into a low impedance

with shunt parasitic capacitance, a common require-

ment in the design of varactor multipliers, for example.

The difficulty is overcome in one of two ways.

1) Introduce a redundant TLE at the end with no

shunt stub, and transform part of the previous shunt

stub across the two TLEs by means of Kuroda’s iden-

tity [1, p. 765] to give a double-length TLE of uniform

impedance. This procedure is illustrated in Fig. 3. The

final version shown in Fig. 3(c) is the one given in

Tables I–V.

2) Synthesize prototypes having second-ordered

transmission zeros (or attenuation poles). Matrix (5)

applies to the single-ordered case having 2n TLEs and

one effective shunt stub. If this is multiplied by a series

stub having transfer matrix

1 Zt

[101
(8)

the degree becomes

[

2%
=D 12n+1 (9)

2n+l 2ni-2

which is capable of satisfying condition (4). This proto-

type is shown in Fig. 4, with the termination of Fig.

4(a). Alternatively the series stub may be replaced by a

redundant TLE of length O and another shunt stub by

means of Kuroda’s identity, leading to the termination

of Fig. 4(b). This is the form of network given in Table

VI.

Note that the only disadvantage of the single-length

TLE would be at high frequencies where it may become

rather short. It does not affect the accuracy of conver-

sion to a semilumped filter. Indeed prototypes having

higher ordered transmission zeros could be synthesized

with an arbitrary mixture of single and double TLEs in

the cascade, but this would appear to offer no ad-

vantages for the simple terminations under considera-

tion. They could be useful as matching networks where

more complex parasitic situations at either or both

terminations exist.

‘I__AL
o e. e-5

(a)

P. A

T
L2

(Q+I)2

4R
/

w \/ v ——
0 LIJ, (4 (AJ

(b)
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Fig, 5. (a) Insertion loss of commensurate distributed filter with
mth-ordered pole. (b) Insertion loss of lumped element imped-
ance-transforming filter.

SOLUTION OF THE APPROXIMATION PROBLEMS

A. Single-Ordered Transmission Ze~o

The insertion loss is equiripple on the O axis between

01 and 62, is equal to (R+l)2/4R at 6’= O, and has a sin-

gle-ordered pole at 6’= 7r/2. It must lead to the derivation

of a transfer matrix of degree given by (7). The function

required is suggested by known solutions to two other

different approximation problems, each having char-

acteristics similar in part to that of Fig. 1. Combining

the ideas of these leads to the solution in the present

case.

The first of these is the solution to the problem of the

general commensurate transmission-line filter consisting

of a cascade of n TLEs and m nonredundant stubs [9],

[10]. In this case the insertion loss function for the

Chebyshev low-pass filter shown in Fig. 5(a) is

PO

( )
= 1 + IZ.2COS2 ‘1?(20s-1 : + m Cos–1 : (lo) ‘

PL 1 so To

where

s sin e T tan 0
—.— ?—=——
so sin 00 To tan 00

(11)
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and in (10) and in similar functions derived later, the

trigonometric cos becomes hyperbolic cosh when the

arguments in the inverse functions become greater than

unity.

The second case is the lumped element quasi-low-pass

impedance-transforming filter referenced in [2], for

which the Chebyshev equiripple characteristic is shown

in Fig. 5(b). The insertion loss function for the case of

degree 2n is

Pll

(

2W2 — (422 — U12
= 1 + )z2Tn2

)

(12)
x 2 C!& — W12

where

(13)

and T. is the first-kind Chebyshev polynomial of degree

n. In the case of a single-ordered transmission zero,
m = 1 in (10), in which case it may be written in the

form

gest that in this case the insertion loss may be given as

Po
— = 1 + h2 cos2 (n cos–l s’ + m cos–l r’) (21)
PL

where s’, s, s1, and sz are defined as in (16)–(17), and

7-=tan O (22)

with r’, rl, and 72 being defined from (16) and (17) by

replacing s everywhere by r.

The proof that (21) is a rational function of the

desired form for the problem under consideration is

given in the Appendix. The case of interest here for the

circuit shown in Fig. 4 has m =1. It is shown in the Ap-

pendix that in this case (21) can be written in the follow-

ing form, which is more convenient for synthesis:

%=1+[’P27(ST

[

()sin 0

( )]

sin 0 2
(1 + COS &)~,n ~0 – (1 – cos 00)T2.-1 —

Po sin 60
=l+hs

PL 1

Equations (1 2)–(14) suggest that the solution to the

insertion loss approximation problem of Fig. 1 for a

cascade of 2n TLEs and a single nonredundant stub may

be given as

PO
—--.-.1+L2

[ 1

aT.(s’) — BT*l(S’) 2
(15)

PL Cos 0

where

2s2 — S12— S22
St = (16)

S22— S12

s = sin O, S1 = sin 01, S2 = sin 92. (17)

Here the choice of the arguments of the Chebyshev

functions to be s’ as in (16) ensures that the equiripple
range is completely traversed in the interval 131<6<02.

The parameters h, a, and ~ of (15) may now be chosen

to give the correct values at O= O, 6 =01, and O=02, lead-

ing to the values

COS 02+ cos 01
~= p= Cos0’ ; Cos‘2 (18)

2
R–1
_ . k[aTm(so’) + 6T.-I(so’)]
2~R

where

’22 + ’12
so’ =

S22 — S12

(19)

(20)

It is simple to show that (15) is an equiripple func-

tion.

B. Double-Ordered Transmission Zero

Here the more general case of a 2mth-ordered trans-

mission zero will be derived. Equations (10)–(12) sug-

Cos e J
(14)+

where

s = sin 0, C=cose (24)

and PAn+S(S) is a polynomial of degree 2n + 2 in sin O’

given by

P,n+z(s) = ~(c, + 62)2 T.+l(s’) + & – c2)2Tn-l(s’)

+ ;[c22 – C12]~n(s’) (25)

where s’ is given by (16) and the subscripts to s and c

defined in (24) refer to the angles 01 and Osof Fig. 1. The

impedance-transformation ratio R is determined by the

value of po/pL at6=(),i.e.,

R–1
- = P2.+2(0)
2~R

(26)

which, as in the first-ordered case, determines the value

of the passband ripples by fixing the value of h in (23).

THE SYNTHESIS

The synthesis of either type A or type B insertion loss

functions in the form shown in Figs. 3 and 4 is fairly

standard. It must be performed by computer since the

calculations are lengthy, and a high degree of accuracy

must be maintained throughout. Details of the synthesis

may be found in previous papers, e.g., [5], [8].

There is no guarantee that the element values derived

by the synthesis will be all positive. However, the only

cases so far computed where one or two shunt stubs be-

came negative occurred for 62> 7r/4, and the circuits

appear to be realizable for all useful values of the

parameters.
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THE TABLES

Tables I–V give representative examples of prototypes

with single-ordered transmission zeros, and Table VI

presents double-ordered cases. The transforming and

filtering properties of the prototypes are very good for

bandwidths to 3:1 and impedance ratios to 10:1 with ‘“s3’”

n <4, and these are the limiting values chosen for tabu-

lation. Tables I–VI give values corresponding to the
Fig. 6. Mixed lumped and distributed 50–10-!2 transformer for

3.5–7.0 GHz. Impedances in ohms, capacitances in picofarads,

following parameters: line lengths in inches.

n 2, 3, 4

Band edges 01, Oz 15, 30 and 15, 45
Immitance ratio R 2, 3, 4, 5, 6, 8, 10

Tables I–V are for prototypes with single-ordered

transmission zeros as illustrated in Fig. 3(c). The lowest

degree case would be for n =1, but this does not give

good values of VSWR for octave bandwidths, and is not

tabulated here. The case n = 2 for 3:1 bandwidth is not

tabulated for the same reason.

Each column corresponds to the value of R denoted

at the head, The first (n+ 1) numbers are the normal-

ized admittances of the open-circuited stubs of length

0. The next n numbers are the normalized admittances

of the TLEs of length 20. The terminating admittances

of the filter transformer are given as 1 and R, with the

termination of admittance R following stub (n+ 1).

(Note that elsewhere in the text R may have the dimen-

sions of impedance, e.g., (3), (4). The next row gives the

peak value of the VSWR in the passband. Finally the

filter properties are illustrated by giving the attenua-

tion of the derived mixed lumped and distributed filter

at values of O (defined in Fig. 1) from Oa+ 15° through

90° in increments of 15°. The attenuation has a rather

sharp minimum just above 90°, and then increases

again. The derived mixed lumped and distributed filter

is given by replacing all shunt stubs Yl, Y2, o “ - , y.+1 by

lumped capacitors Cl, C2, . . “ , c~ql through application

of (1). This process is illustrated in the next section.

Table VI presents cases with doubled-ordered trans-

mission zeros for n = 2, 61= 15°, 02= 30°. The general cir-

cuit is shown in Fig. 4(b), which indicates that the first

n lines are of length 20, but the final TLE is of length 6.

Note that the double-ordered case gives one more TLE

and one more stub than the corresponding value of n for

the single-ordered case. Indeed the values given in

Table VI are similar to those given in Table II. Only

one table is presented for the double-ordered cases since

the single-ordered cases are expected to find dominant

use.

The computer program written in Basic occupies less

than 8K of core, and the total computation time for the

complete set of tables was approximately 25 seconds,
using a CDC 3600 time-sharing computer service.

A number of interesting and useful features men-

tioned earlier may be noted by inspection. In all cases

the line admittances are less than the terminating ad-

mittance R, often considerably less. In many cases

these admittances also are all greater than unity, so

that the admittance level of the transformer lies within

the range of admittances encompassed by the two

terminating values for such cases. As n increases the

admittance level becomes more oscillatory, but the

VSWR is already rather good to excellent at n = 4, with a

useful stopband attenuation. When the prototype is

converted to the L/D filter the VSWR deteriorates

slightly, so that for this and practical reasons there is no

point in choosing a prototype VSWR which is excep-

tionally close to unity.

EXAMPLE

This example is for a double-ordered case, since this

was the first to be synthesized. The technique would be

almost identical to the case of the single-ordered trans-

mission zero, which as statecl would usually be preferred.

The example may be stated in problem form as follows.

Design a filter for the passband 4.0–6.5 GHz to trans-

form from 50 Q to 10 Q having passband VSWR better

than 1.2 and attenuation >20 dB in the band 12–19.5

GHz.

The passband is centered in the octave band 3.5–7.0

GHz, and if we design for this we should have 0.5 GHz

of excess bandwidth on each side, which gives a useful

safety factor (normally we would not want to use fine

tuning). The prototype chosen here is for n =2, R =5,
given in Table VI, with a VSWR of 1.1411. The attenua-

tion is greater than 20 dB, at least from O= 45° through

90°, corresponding to the band 10.5--~! 1 GHz (since

L9=30” at 7.0 GHz).

The normalized susceptances of the lumped shunt

capacitors at 6 = 30° are calculated from (1), noting that

we are now normalized to Z Q rather than 1 Q, i.e.,

uOZCI = 1.7632 tan 30 = 1.0:180

and similarly

woZCz = 2.6883 @ozc3 =’ 4.9594 UOZC4= 1.9809.

Setting COO= 27rX 7 X 109 rad/s and Z== 50 il, the shunt

capacitors are, in picofaradk,

C, = 0.464 C, = 1.220 C, = 2.25.5 C, = 0.901.

The mixed lumped and distributed filter design is shown

in Fig. 6, and its theoretical performance compared with

that of the distributed prototype in Fig. 7. Where no

dotted line is shown the difference between the mixed
lumped and distributed filter and the prototype is

negligible e.g., this is so for the passband VSWR.
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Fig. 8. 50-10-f2 impedance-transforming filter realized in coaxial line.

This ideal mixed lumped and distributed filter trans-

former is 0.703 in long in air, compared to 1.26 in for the

conventional three-section quarter-wave transformer
required for an octave bandwidth. The latter would re-

quire an additional low-pass filter in cascade to meet the

stopband attenuation requirement.

A PRACTICAL REALIZATION AND

EXPERIMENTAL RESULTS

The mixed lumped and distributed filter of Fig. 6 may

be realized in a variety of media, e.g., in strip trans-

mission Iine, microstrip, or coaxial line. The latter was

chosen for convenience, and a dimensioned diagram of

the device is given in Fig. 8. It is slightly longer than

the ideal mixed lumped and distributed transformer of

Fig. 6 because the disk capacitors are quite thick, The

computed performance given in Fig. 7 also shows a

slightly lower level of stop band attenuation. In the

design of Fig. 8 due account has been taken of fringing

capacitances and mutual interactions [12 ]. The line

lengths between the disk capacitors were adjusted to

allow for the extra phase shift due to the ‘finite disk

thickness. The equivalence was carried out at the cut-

off frequency of 7 GHz, which in theory should be

realized exactly.

Two transformers of this type were manufactured

and connected together back to back, spaced by a

0.420-in length of 1042 line. The comparison between the

computed and measured performance of this double

transformer is given in Fig. 9. The two transformers
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interact considerably to give a very different presenta-

tion to that of the individual transformer whose char-

acteristics are given in Fig, 7. It is noteworthy how

closely the large ripples in both passband and stopband

caused by the interaction are reproduced in the experi-

ment. The only significant deviation from theory is a

downward shift of the entire characteristic by an

amount of approximately 0.4 GHz. A likely cause of

this is that the fringing capacitances of the disks were

calculated assuming that the dielectric has no effect,

whereas in practice they are almost certainly increased.

The experimental results show that apart from the fre-

quency shift the performance of an individual trans-

former is substantially realized as the theoretical char-

acteristic of Fig. 7.

NOTE ON BROAD-BAND MATCHING

The new class of mixed lumped and distributed

transformers may be used to match between two im-

pedances having simple parasitic, such as shunt capaci-

tances or series inductances, or occasionally when one
impedance has an RLC equivalent circuit [see Fig.

4(a)]. As stated previously, more complicated situations

could be handled by synthesizing an appropriate type of

filter. The main point to note here is that the filter

transformers tabulated in this paper are not optimum

for the broad-band matching case. Here the optimum

must give a passband reflection coefficient which is as

close as possible to a constant, and certainly no reflec-

tion coefficient zeros are al[owable [13]-- [15]. The opti-

mum cases are derived by adding a positive parameter

to the insertion loss function of (15) or (23). This has the

effect of preventing the occurrence of reflection co-

efficient zeros in the passband. In any given matching

situation the value of the parameter is chosen to give a

minimum mismatch over the desired passband, as

described in [13]- [15].

However, in many practical situations the synthesis

of specially optimized matching functions may not be

justified, and quite acceptable results may be obtained

by direct application of the circuits tabulated in this

paper.

CONCLUSIONS

The new type of impedance transformer may be

safely specified for many applications where multistep

quarter-wave transformers are now used, giving a con-
siderable saving in length. The technique has not yet

been tested for very low VSWR applications (< 1.05)

and further research would be necessary here. However,

it is safe to predict that this could certainly be obtained

by tuning.
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The harmonic filtering properties of the new trans- This may be expanded to give

former will be of advantage in many instances, enabling ~(~, ~, = ~fi(SJ) ~~(tl)

both a conventional transformer and a low-pass filter to

be replaced. It may be realized in any type of transmis- – tln(s’) u~(~’)~(1 – S“)(1 – t“). (32)

sion line (including waveguides).

The transformer realization has been presented as a
Hence F(s, t) will be a rational function in s and t if

~(1 – s“) (1 -t’) 2 is rational. It is simple to show that
cascade of lumped element shunt capacitors and trans-

mission lines, avoiding the introduction of inductors.

Possibly the dual network consisting of series inductors
<(1 – S“)(I – t“) = ; (1 – s“) (33)

and transmission lines may be of use in some rare appli-
which is indeed rational, and this completes the proof.

cations.

The impedance-transforming filters may also be used
In the case where m =1, (32) becomes

as convenient broad-band matching networks. Here for
F(s, t) = t’1”.(s’) – y 77.(s’) (1 – s“). (34)

optimum results or for more complicated matching

problems an appropriate new transfer function would be
Another relationship between t’and s’ is that

specified, but this would then require synthesis by com-

puter. (2 – s,’ – S“)s’ + (s,’ – s,’)

The facility of the distributed prototype network ap-
t’=

2C2
(35)

preach to the design of mixed lumped and distributed

two-port networks may be considered clearly demon-
Using also the following well-known (and simply de-

strated in this and a previous paper [8]. It would be out-
rived) properties of the Chebyshev polynomials,

moded by the appearance of a solution to the two-vari- Tn+l(s’) + Tn_l(s’) = 2S’T.(S’) (36)

able approximation problem associated with a synthesis

technique, which would need to be simple to apply in
Tn+l(s’) – Tn_l(s’) = – 2(1 – s“) Un(s’) (37)

practical situations. then (34) becomes

F(s, t) = {[1 – +(s12 + Sr) + C,C,]T.+,(S’) + [1 – +(s1’ + s“) – C1C2]TJS’) + (s1’ – S22) Tn(s’))/2c’

= {*(C, + C’)’T.+,(s’) + *(C, – c2)’Tn_I(s’) + (c” – c,’) T.(s’))/2c’. (38)

APPENDIX

Proof that Insertion Loss Function (21) is Rational

The rational Chebyshev polynomials are defined as

follows:

First kind:

{

cos n cos–] x,
T.(x) =

[s[<1

cosh n. cosh–l x, Ixl>l. .

Second kind:

I
sin n cos–l x

7 Izp<l —
sin cos–l x

u.(x) =
I sinh n cosh-l x

I

, 1$1>1 —,
sinh cosh–l x

Note that sin cos-% = <1 –X2, etc.

Using the abbreviation of the type introduced in

2s~ – SIC – s“ 2t’ — tl’ — iy
St = ~1=

S12 — S22 tl’— t“

then (21) becomes

Po
= 1 + k2F2(s, t)

x
where

F(s, t) = COS (n COS-l S’ + 7?SCOS-l t’).

(27)

(28)

(16),

(29)

(30)

(31)

Substitution of (38) into (30) gives the final expression

presented in (23)-(25).
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Short Papers

Measurement of Dielectric Materials Using a Cutoff

CircuIar-Waveguide Cavity

J. HANFLING AND L. BOTTE

Abstract—A technique is presented for accurately determinhg

the dielectric constant of microwave materials. The concept is to

resonate a cutoff circular-waveguide cavity by inserting the dlelectric-

disk sample. Unlike most dielectric measurement techniques which

rely on perturbation methods, this one determines the dielectric con-

stant from the absolute measurement of the resonant frequency.

Also, the use of a cutoff cavity prevents false dielectric constant read-

ngs by eliminating spurious resonances.

1. INTRODUCTION

A cutoff circular-waveguide cavity is used for accurate and con-

venient measurement of the dielectric constant of microwave ma-

terials. The technique is applicable to all materials which can be

formed into a circular disk.

The concept consists of locating a dielectric disk transversely at

the center of a short-circuited circular-waveguide cavity. The domi-

nant resonance of the cavity is for the TEu mode even though the

unfilled portion of the cavity is below cutoff. The dielectric constant

of the disk material is determined from the resonant frequency. In

practice the cavity is not short-circuited, but is weakly coupled to

rectangular waveguide by coupling holes, as shown in Fig. 1(a). The

features of the technique are the following: there are no higher mode

resonances, the end effects introduced by coupling into and out of the

cavity are accountable, and the samples are large providing good

accuracy and reliability in determining the dielectric constant.

Using the parameters in Fig. 1 (b), the formulas for determining

the dielectric constant will be derived. Then the measured results and

accuracies will be described.

II. DERIVATION OF FORMULAS

In order to determine the dielectric constant of a disk, a relation

between the measured cavity resonant frequency~o and the dielectric

constant K of the disk is established. The desired formula is obtained

by means of the “transverse-resonance” procedure [1], [2]. This

procedure is valid since the generator and load impedances are

loosely coupled to the disk; therefore, only reactive portions of the

Manuscript received September 16, 1971; revised October 26, 1971.
Tbe authors are with the Missile Systems Division, Raytheon Company, Bed-

ford, Mass. 01730.
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Fig. 1. (a) Cavity configuration,. (b) Equivalent circuit of cavity.

cavity need be considered. Referring to Fig. 1 (b), the transverse-

resonance condition is

;+ 7=0. (1)

When the center of the cavity is an open-circuit (OC) bisection, then

the right-hand term in (1) becomes

(2)

and the left-hand term in (1) is

+-
Y = –jv.tote.’ (3)


